

| Grade:11 & 12 | Mathematics 數學 数学|

Max Marks:200

滿分: 200

满分: 200

Time Allotted: 60 Mins

時限: 60 分鐘

时限: 60 分钟

Instructions:

- Question number 1 to 10 has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
第 1 至 10 題有四個選項 (A), (B), (C) and (D), 其中只有一個是正確的。
第 1 至 10 题有四个选项 (A), (B), (C) and (D), 其中只有一个正确的。
- Question number 11 to 20 are of short answer type.
第 11 至 20 題為簡答題。
第 11 至 20 题为简答题。
- Each question carries 10 Marks.
每題 10 分。
每题 10 分。

1)

In a leap year the probability of having 53 Sundays or 53 Mondays is

在閏年，有 53 個星期日或 53 個星期一的機率是

在闰年，有 53 个星期日或 53 个星期一的概率是

- (A) $2/7$
- (B) $3/7$
- (C) $4/7$
- (D) $5/7$

2)

If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7, then the number of relations from A to B is

如果 A 是小於 8 的偶數自然數集, B 是小於 7 的質數集, 那麼從 A 到 B 的關係數為

如果 A 是小于 8 的偶数自然数集, B 是小于 7 的质数集, 那么从 A 到 B 的关系数为

- (A) 2^9
- (B) 9^2
- (C) 3^2
- (D) $2^9 - 1$

3)

Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a linear function from Z into Z , then $f(x) =$

設 $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ 為從 Z 進入 Z 的線性函數, 則 $f(x) =$

设 $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ 是一个从 Z 进入 Z 的线性函数, 则 $f(x) =$

- (A) $2x - 1$
- (B) $2x$
- (C) $2x + 1$
- (D) $-2x + 1$

4)

If the letters of the word SACHIN are arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number

如果將單字 "SACHIN "的字母以所有可能的方式排列, 並按照字典中的方法寫出這些單詞, 那麼單字 "SACHIN "會是第幾個?

如果将单词 "SACHIN "的字母以所有可能的方式排列, 并按照字典中的方法写出这些单词, 那么单词 "SACHIN "会是第几个?

- (A) 601
- (B) 600
- (C) 602
- (D) 603

5)

If the coefficients of x^7 and x^8 in $(2 + \frac{x}{3})^n$ are equal, then n is

如果 x^7 和 x^8 在 $(2 + \frac{x}{3})^n$ 中的係數相等, 則 n 是

如果 x^7 和 x^8 在 $(2 + \frac{x}{3})^n$ 中的系数相等, 则 n 是

(A) 56

(B) 55

(C) 45

(D) 15

6)

The value of cosec $(-1410)^\circ$ is equal to

cosec $(-1410)^\circ$ 的值等於

cosec $(-1410)^\circ$ 的值等于

(A) 1

(B) 1/2

(C) 2

(D) None of these

7)

4th term from the end of the G.P. 3, 6, 12, 24., ..., 3072 is

由等比數列 3, 6, 12, 24., ..., 3072 的最後一項開始數起的第四個項是

从等比数列 3, 6, 12, 24., ..., 3072 的最后一项开始数起的第四个项是

(A) 348

(B) 843

(C) 438

(D) 384

8)

The value of $\lim_{x \rightarrow 0} \frac{x^3 \cot x}{1 - \cos x}$ is

$\lim_{x \rightarrow 0} \frac{x^3 \cot x}{1 - \cos x}$ 的數值是

$\lim_{x \rightarrow 0} \frac{x^3 \cot x}{1 - \cos x}$ 的数值是

(A) 1

(B) -2

(C) 2

(D) 0

9)

$(^8C_1 - ^8C_2 + ^8C_3 - ^8C_4 + ^8C_5 - ^8C_6 + ^8C_7 - ^8C_8)$ equals:

$(^8C_1 - ^8C_2 + ^8C_3 - ^8C_4 + ^8C_5 - ^8C_6 + ^8C_7 - ^8C_8)$ 等於:

$(^8C_1 - ^8C_2 + ^8C_3 - ^8C_4 + ^8C_5 - ^8C_6 + ^8C_7 - ^8C_8)$ 等于:

(A) 0

(B) 1

(C) 70

(D) 256

10)

If $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2 + 2AB$, then values of a and b are

如果 $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ 且 $(A + B)^2 = A^2 + B^2 + 2AB$, 則 a 和 b 等於

如果 $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ 且 $(A + B)^2 = A^2 + B^2 + 2AB$, 那么 a 和 b 等于

(A) $a = 1, b = -2$

(B) $a = 1, b = 2$

(C) $a = -1, b = 2$

(D) $a = -1, b = -2$

11)

In a chess tournament where the participants were to play one game with one another, two players fell ill having played 6 games each, without playing among themselves. If the total number of games is 117, then the number of participants at the beginning was :

在一次西洋棋比賽中，每位參賽者都要和每個對手下一盤棋，有兩位棋手在每人下了 6 盤棋後病倒了，他們之間沒有下棋。如果棋局總數是 117 局，那麼開始時的參賽人數是：

在一次国际象棋比赛中，每位参赛者都要和每个对手下一盘棋，有两位棋手在每人下了 6 盘棋后病倒了，他们之间没有下棋。如果棋局总数是 117 局，那么开始时的参赛人数是：

.....
12)

$$\text{Evaluate: } \int \frac{1}{\sqrt{\sin^3 x \cos^5 x}} dx$$

找出以上算式的答案。

.....
13)

If the sum of an infinitely decreasing GP is 3, and the sum of the squares of its terms is $9/2$, then sum of the cubes of the terms is

如果一個無限遞減的等比數列的總和是 3，其項的平方的和是 $9/2$ ，那麼其項的立方的和是

如果一个无限递减的等比数列的总和是 3，其项的平方的和是 $9/2$ ，那么其项的立方的和是

.....
14)

The solution of $x^3 \frac{dy}{dx} + 4x^2 \tan y = e^x \sec y$
satisfying $y(1) = 0$ is :

以上算式中滿足 $y(1) = 0$ 的解是：

以上算式中满足 $y(1) = 0$ 的解是：

15)

The locus of the centre of a circle, which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches the y-axis, is given by the equation:

一個圓的圓心在外部與圓 $x^2 + y^2 - 6x - 6y + 14 = 0$ 相交, 並且與 y 軸相交, 這個圓的圓心軌跡的方程是:

一个圆的圆心在外部与圆 $x^2 + y^2 - 6x - 6y + 14 = 0$ 相交, 并且与 y 轴相交, 这个圆的圆心轨迹的方程是:

16)

Find the distance from the eye at which a coin of a diameter 1 cm be placed so as to hide the full moon, it is being given that the diameter of the moon subtends an angle of $31'$ at the eye of the observer.

假設月亮的直徑與觀察者的視線成 $31'$ 角, 求放置一枚直徑為 1 cm 的硬幣與觀測者的距離使得硬幣足以遮住整個月亮。

假设月亮的直径与观察者的视线成 $31'$ 角, 求放置一枚直径为 1 cm 的硬币与观测者的距离使得硬币足以遮住整个月亮。

17)

In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is :

在裝有 100 個燈泡的盒子裡, 有 10 個燈泡是壞的。若從中隨機選出5個燈泡, 燈泡全部完好的機率是 :

在装有 100 个灯泡的盒子里, 有 10 个灯泡是坏的。若从中随机选出5个灯泡, 灯泡全部完好的概率是 :

18)

In a batch of 15 students, if the marks of 10 students who passed are 70, 50, 95, 40, 60, 70, 80, 90, 75, 80 then the median marks of all the 15 students is:

在 15 名學生中, 如果 10 名及格學生的分數分別為 70、50、95、40、60、70、80、90、75、80, 那麼所有 15 名學生分數的中位數是:

在 15 名学生中, 如果 10 名及格学生的分数分别为 70、50、95、40、60、70、80、90、75、80, 那么所有 15 名学生分数的中位数是:

19)

If $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then $f \circ f(x)$ is

如果 $f: \mathbb{R} \rightarrow \mathbb{R}$ 取自 $f(x) = (3 - x^3)^{\frac{1}{3}}$, 則 $f \circ f(x)$ 為

如果 $f: \mathbb{R} \rightarrow \mathbb{R}$ 取自 $f(x) = (3 - x^3)^{\frac{1}{3}}$, 则 $f \circ f(x)$ 为

20)

If $A(3, 2, 0)$, $B(5, 3, 2)$ and $C(-9, 6, -3)$ are three points forming a triangle and AD , the bisector of angle BAC , meets BC in D , then the coordinates of the point D are

若 $A(3, 2, 0)$ 、 $B(5, 3, 2)$ 和 $C(-9, 6, -3)$ 三點組四三项形, 直项 BAC 的硬分線 AD 繩 BC 相
使於 D , 則 D 點的座標為

若 $A(3, 2, 0)$ 、 $B(5, 3, 2)$ 和 $C(-9, 6, -3)$ 三点组四三项形, 直项 BAC 的硬分线 AD 部 BC 相
使于 D , 则 D 点的坐标为

END OF PAPER